
A TrendLabsSM Research Paper

Hacker Machine
Interface

The State of SCADA HMI Vulnerabilities

Trend Micro Zero Day Initiative Team

TREND MICRO LEGAL DISCLAIMER
The information provided herein is for general information and
educational purposes only. It is not intended and should not be
construed to constitute legal advice. The information contained
herein may not be applicable to all situations and may not reflect
the most current situation. Nothing contained herein should be
relied on or acted upon without the benefit of legal advice based
on the particular facts and circumstances presented and nothing
herein should be construed otherwise. Trend Micro reserves the
right to modify the contents of this document at any time without
prior notice.

Translations of any material into other languages are intended
solely as a convenience. Translation accuracy is not guaranteed
nor implied. If any questions arise related to the accuracy of a
translation, please refer to the original language official version
of the document. Any discrepancies or differences created in the
translation are not binding and have no legal effect for compliance
or enforcement purposes.

Although Trend Micro uses reasonable efforts to include accurate
and up-to-date information herein, Trend Micro makes no warranties
or representations of any kind as to its accuracy, currency, or
completeness. You agree that access to and use of and reliance
on this document and the content thereof is at your own risk. Trend
Micro disclaims all warranties of any kind, express or implied.
Neither Trend Micro nor any party involved in creating, producing, or
delivering this document shall be liable for any consequence, loss,
or damage, including direct, indirect, special, consequential, loss
of business profits, or special damages, whatsoever arising out of
access to, use of, or inability to use, or in connection with the use
of this document, or any errors or omissions in the content thereof.
Use of this information constitutes acceptance for use in an “as is”
condition.

WRITTEN BY:

Brian Gorenc and Fritz Sands

of the Trend Micro Zero Day Initiative Team

Contents

Critical Infrastructure
Attacks

4

An Overview of the
HMI Industry

6

Prevalent Vulnerability
Types in Attack Surfaces

7

Disclosure Statistics

21

Researcher Guidance

24

Conclusion

26

The impact of attacks targeting supervisory control and data acquisition (SCADA) systems

depends on the threat actors’ intent and the level of access and knowledge they have

about the target. The Stuxnet and Ukranian power grid attacks give us clear ideas about

how much damage a determined adversary can inflict not only on the business or operation

concerned, but also on the general public.

Threat actors can use their access to SCADA systems to gather information such as a

facility’s layout, critical thresholds, or device settings for use in later attacks. Sabotage,

including disrupting services or triggering dangerous and even lethal situations involving

flammable or critical resources, represent an undesirable extreme.

Attackers infiltrate SCADA systems through various means, one of which is through the

exploitation of software vulnerabilities prevalent in Human Machine Interfaces (HMIs).

An HMI displays data from machines to a human and accepts commands from a human

operator to machines. Through this interface, an operator monitors and responds to

the information displayed on a system. A modern HMI provides a highly advanced and

customizable visualization about the current state of a system. More often than not, the

operator controls a SCADA system through this interface, which is often installed on a

network-enabled location. As such, the HMI must be considered a primary target within a

SCADA system, which should only be installed on an air-gapped or isolated on a trusted

network. Experience shows this is not always the case.

Despite the obvious risks of obtaining unauthorized access to critical systems, the industry

behind the development of SCADA systems, specifically HMI vendors, tend to focus more

on equipment manufacture and less on securing the software designed to control them. The

lack of global standards for HMI software further exacerbates software security problems

within this field. We have also observed the same predictable software development

oversights, which demonstrate that HMIs are not utilizing basic defense-in-depth measures.

This research examines the current state of SCADA HMI security by reviewing all publicly

disclosed vulnerabilities in SCADA software that have been fixed from 2015 and 2016,

including 250 vulnerabilities acquired through the Zero Day Initiative (ZDI) program. We

found that most of these vulnerabilities are in the areas of memory corruption, poor credential

management, lack of authentication/authorization and insecure defaults, and code injection

bugs, all of which are preventable through secure development practices.

Finally, we observed the average time between disclosing a bug to a SCADA vendor to

releasing a patch reaches up to 150 days, 30 more days than it would take highly deployed

software such as those of Microsoft or Adobe, but significantly less than enterprise offerings

from companies such as Hewlett Packard Enterprise (HPE) and IBM. This means that it

takes an average of five months before SCADA vulnerabilities ever get patched. This, of

course, differs among vendors. Some vendors may take as little as the same week while

larger ones can take up to 200 days to do so.

4 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

Critical Infrastructure Attacks
Though you may not realize it, everyday modern life relies heavily on SCADA systems. These systems are

responsible for running industrial processes involved in activities such as power generation, manufacturing,

mechanized production, and refining. SCADA systems are at the core of water treatment plants, gas

pipelines, electrical power distribution systems, wind farms, expansive communication systems, and even

civil defense sirens. In other words, behind most modern conveniences, there exists a SCADA system

somewhere that controls them. Therefore, attacks on SCADA systems have the potential to impact a wide

range of systems and numerous pieces of critical infrastructure. Such was the case for two well-known

attacks—the Iranian nuclear systems attack, better known as “Stuxnet,” and the Ukrainian power grid

attack.

Stuxnet Attack on an Iranian Nuclear Plant
Much has already been written about Stuxnet. In fact, there is so much information available about this

piece of malware that it has its own book1 and movie.2 While Stuxnet’s end goal was to sabotage Iran’s

nuclear program by damaging programmable logic controllers (PLCs), the likely state-sponsored worm

did so by targeting the Siemens WinCC engineering software, which provides HMI-like functionality.3

Reports state that as many as one-fifth of Iran’s centrifuges were damaged by Stuxnet.4 The emergence

of malware that target the critical infrastructure of a foreign nation shows how critical finding and fixing

problems within SCADA systems has become.

The Ukrainian Power Grid Attack
On 23 December 2015, unscheduled power outages began affecting a large number of customers

serviced by Ukrainian power companies. There were also reports of malware infections affecting Ukrainian

companies in a variety of critical infrastructure sectors. According to the Industrial Control Systems Cyber

Emergency Response Team (ICS-CERT),5 “During the cyber attacks, malicious remote operation of the

breakers was conducted by multiple external humans using either existing remote administration tools

(RATs) at the OS level or remote ICS client software via virtual private network (VPN) connections.” In other

words, attackers turned off the lights for more than 230,000 customers with a few mouse clicks. These

5 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

attacks did not target HMI vulnerabilities, but they did target the HMI solution. Because there was no

network isolation, the attacker was able to connect via VPN and used remote access solutions to disable

systems via the HMI.

While some Ukrainians were quick to place the blame on their neighbors to the east, the truly frightening

piece of this story is the acknowledgment that the Ukrainian power system was found to be more secure

than counterparts in the U.S.6 Regardless of who was responsible or why, the attack showed what a

determined actor could do to a nation’s power supply given enough time and resources.

The Role of the U.S. ICS-CERT
A part of the U.S. Department of Homeland Security, ICS-CERT is tasked with reducing risks within and

across all critical infrastructure sectors by partnering with law enforcement agencies and the intelligence

community, and coordinating efforts among federal, state, local, and tribal governments and control

system owners, operators, and vendors.7 When the ZDI program purchases vulnerabilities that affect

SCADA systems, a majority are reported to ICS-CERT for resolution. In 2015, ICS-CERT responded to

295 incidents and handled 486 vulnerability disclosures.8

Why Target the HMI
When going after SCADA systems, attackers tend to target the HMI for obvious reasons. The HMI

represents the main hub for managing the critical infrastructure. If it can be compromised, just about

anything can be done to the infrastructure itself, including causing physical damage to SCADA equipment.

Even if the intent is not to harm the SCADA system, by controlling the HMI an attacker could harvest

critical architecture information for other purposes. Since the HMI acts as the main hub for managing

the critical infrastructure, controlling it allows an attacker to harvest information about its architecture.

An attacker could also disable alarms and notifications meant to alert operators to dangers to SCADA

equipment.

6 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

An Overview of the
HMI Industry
The marketplace for SCADA HMI is very active, but often not as secure as desired due to a variety of

reasons. The largest HMI vendors in the industry include Siemens, Advantech, and GE, but there are also

smaller players in many other countries. For instance, vendors in Asia specialize in systems for the region.

The same can be said for vendors in Europe and North America.

Furthermore, since vendors of various sizes coexist, mergers and acquisitions happen frequently as well.

In some cases, a small vendor gets bought before a patch comes out, making it hard to track the state

of vulnerability throughout the disclosure process. Additionally, SCADA system vendors tend to focus on

the actual industrial equipment and not on the software that manages them because they make the most

profit selling the hardware. In fact, often, the HMI for a system is freely downloadable.

When it comes to the actual codes behind SCADA systems, a majority does not utilize basic defense-in-

depth measures such as address space layout randomization (ASLR),9 SafeSEH,10 or stack cookies.11 This

may be related to the mistaken belief that these solutions will operate in a completely isolated environment.

SCADA solution developers often have little experience with regard to user interface (UI) construction.

This is coupled by the fact that developers do not know what the final operating environment will be like

for the systems. This causes developers to make assumptions that are often incorrect. Without a mature

development life cycle program to guide them, SCADA developers will likely continue to make the same

mistakes that application and OS developers made a decade ago.

7 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

Prevalent Vulnerability
Types in Attack Surfaces
In order to determine what vulnerabilities exist in HMIs, ZDI researchers reviewed the 2015 and 2016 ICS-

CERT advisories to identify all of the solutions that had bugs fixed within the last two years. This data was

then cross-referenced with the more than 250 zero days purchased by the ZDI program. This information

was also compared with the Common Weakness Enumeration (CWE) to determine what existed within

this space. We have categorized these SCADA vulnerability types from this time period into memory

corruption, credential management, lack of authentication/authorization and insecure defaults, and code

injection.

Figure 1: Vulnerability categories

While some cross-site scripting (XSS) and Cross-Site Request Forgery (CSRF) issues were expected,

most of the HMIs are Windows- and not web-based applications. Some XSS and CSRF bugs do exist

within the “Others” category, though they are not numerous. Instead, most of the vulnerabilities exist

within one of the four areas, namely:

•	 Memory corruption

•	 Credential management

•	 Lack of authentication/authorization and insecure defaults

•	 Code injection

Memory corruption

Credential management

Lack of authentication/
authorization and insecure
defaults

Code injection

Others

20.44%

18.98%

23.36%

8.76%

28.46%

8 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

Memory Corruption Issues
Memory corruption issues represent 20% of the vulnerabilities identified. The weaknesses in this category

represent classic code security issues such as stack- and heap-based buffer overflows and out-of-bounds

read/write vulnerabilities. Memory corruption may occur in HMIs when the contents of a memory location

are unintentionally modified due to errors somewhere in the code. This may also be referred to as violating

memory safety. When the corrupted memory contents are used later in that program, the program either

crashes or executes code that was not intended to run.

Case Study: Advantech WebAccess HMI Solution

At one point, the ZDI program received 100 separate reports involving the Advantech WebAccess HMI

on a single day. The majority of these cases turned out to be buffer overflows, most of which are similar

to the example below.

Memory corruption 20.44%

Figure 2: Advantech WebAccess dashboard

9 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

One interesting item to note about this product is that while it currently is a SCADA solution, it is also

advertised as an Internet of Things (IoT) solution. The solution contains the service webvrpcs.exe that

runs in the context of a local administrative user. The service listens on Transmission Control Protocol

(TCP) port 4592 by default and may be accessed over a Remote Procedure Call (RPC)-based protocol.

The service calls from the application are intended to resemble Microsoft® Windows® Device IoControl

function calls. Each service call contains an input/output control (IOCTL) value that enables jump tables

to be used to perform hundreds of service types. In this example, the parameter involved is the window

name that is copied via the _sprintf function to a stack buffer that is 0x80 characters.

0000154 05 00 00 03 10 00 00 00 c0 00 00 00 05 00 00 00

0000164 a8 00 00 00 00 00 00 00 c0 3f 58 05 8b 38 01 00 x..8..

0000174 8c 00 00 00 8c 00 00 00 7f 7f 7f 7f 7f 7f 7f 7f

0000184 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f

0000194 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f

00001A4 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f

00001B4 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f

00001C4 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f

00001D4 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f

00001E4 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f

00001F4 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f 7f

0000204 00 00 00 00 04 00 00 00 04 00 00 00 00 00 00 00

The area marked in yellow is the IOCTL code, followed by the buffer length (in and out)—both 0x8c bytes

followed by a terminating null. Since the attack puts 0x8c bytes of data into a 0x80 byte length buffer, the

predictable overflow results. As the process is not ASLR aware, the area ahead of the IOCTL is a binding

handle and connection ID, which is set up by an earlier call to register as a client of the service.

Reviewing the vulnerable code reveals the classic _sprintf call, which allows the overflow condition.

.text:100015D6 loc_10015D6	 ; CODE XREF: BwSvcFunction+44j

.text:100015D6			 ; DATA XREF: .text:off10001B08o

.text:100015d6	push offset aRpc_dllBwcmd_g ; jumptable 10001124

case 20011

.text:100015DB	call	 sub_10001BB0

.text:100015E0	move	 ebx, [esp+0F8h+arg_8]

.text:100015E7	add 	 esp, 4

.text:100015EA	lea	 edx, [esp+0F4h+WindowName]

.text:100015EE	push	 ebx

.text:100015EF	push 	 offset aS	 ; “%s”

.text:100015F4	push	 edx		 ; char *

.text:100015F5	call	 _sprintf

10 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

Inspecting the stack layout reveals that WindowName is set to -80 with 0 as the return address. Since it

was not set during the compile13 stage, there are no stack cookies set to aid in protection.

.text:100010E0 lParam		 = dword ptr -0E4h

.text:100010E0 var_E0		 = dword ptr -0E0h

.text:100010E0 var_DC		 = dword ptr -0DCh

.text:100010E0 var_D8		 = dword ptr -0D8h

.text:100010E0 wParam		 = dword ptr -0D4h

.text:100010E0 var_D0		 = dword ptr -0D0h

.text:100010E0 var_CC		 = byte ptr -0CCh

.text:100010E0 var_C0		 = byte ptr -0C0h

.text:100010E0 File		 = byte ptr -0A0h

.text:100010E0 WindowName	 = byte ptr -80h

.text:100010E0 arg_0		 = dword ptr 4

.text:100010E0 arg_8		 = dword ptr 0Ch

.text:100010E0 arg_C		 = dword ptr 10h

.text:100010E0 arg_10		 = dword ptr 14h

The lack of stack cookies as well as of other protections such as ASLR and SafeSEH is likely due to the

original code being written prior to the existence of these coding practices. However, the use of banned

application program interfaces (APIs) and the lack of defense-in-depth measures mean that an attacker

merely needs to overwrite the return address to the beginning of the attacker-controlled return-oriented

programming (ROP) chain. With no ASLR, no complexities are required to execute attacker-controlled

code at an elevated privilege.

The patch analysis for this vulnerability also shows some interesting choices in cleaning up an aging code

base. The original offending function _sprintf was included in the Microsoft-banned API14 list originally

released in 2007. ZDI researchers expected Advantech to implement a banned-API list and remove known

bad functions from its code. Instead, the patch for this bug changed the _sprintf function to the _snprintf

function.

.text:10001600		 lea	 edx,	 [esp+0F4h+WindowName]

.text:10001604		 push	 ebx

.text:10001605		 push	 offset aS		 ; “%s”

.text:1000160A		 push	 7Fh			 ; size_t

.text:1000160C		 push	 edx			 ; char *

.text:1000160D		 call	 _snprintf

11 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

However, _snprintf is also in the banned-API list. While _snprintf provides more resiliency to overflows

than _sprintf, it fails to null terminate when provided with too many characters. This means that when the

stack is not cleaned out—a rare situation—it becomes possible for attackers to use string manipulation

on this WindowName to trick the program into thinking the buffer is 0x80 characters long when in reality,

the buffer is longer since it did not null terminate.

Out of the 75 patches that Advantech produced, all were point fixes. In other words, the vendor fixed

specific issues but did not globally replace banned APIs or other problematic functions. Thousands of

_sprintf and _snprintf functions remain in the code base. The probability that none of these remaining

banned APIs can be reached by attacker-controlled data is next to zero. Advantech did not release patches

for the remaining 25 issues reported by ZDI researchers. These issues were subsequently disclosed to the

public in accordance with the ZDI program’s policies.15

Credential Management Issues
Credential management issues represent 19% of the vulnerabilities identified. The vulnerabilities in the

category represent cases such as using hard-coded passwords, storing passwords in a recoverable

format (e.g., clear text), and insufficiently protecting credentials.

Credential management 18.98%

Case Study: GE MDS PulseNET Hidden Support Account

General Electric (GE) MDS PulseNET is used to monitor devices and industrial communication networks

deployed in energy, water, and waste water sectors worldwide. The ZDI program received a vulnerability

report that stated, “The affected products contain a hard-coded support account with full privileges.”

The full investigation resulted in the disclosure of CVE-2015-6456 with a Common Vulnerability Scoring

System (CVSS) rating of 9.0.

A look at the user management panel indicates the existence of only two accounts in the system—

operator and admin. However, as noted by Andrea Micalizzi (who also goes by the handle “rgod”), a

hidden third account exists that has full admin privileges.

12 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

Figure 3: GE MDS PulseNET user management panel

Using HeidiSQL16 to extract information from the database exposes the account “ge_support” with a

password hash of <![HDATA[MD5$8af7e0cd2c76d2faa98b71f8ca7923f9. By cracking the MD5 hash, the

password is exposed as “Pu1seNET.”

Figure 4: GE MDS PulseNET user management panel after logging in

Even after logging in using the “ge_support” account, the third user name does not appear in the user

management panel.

13 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

Lack of Authentication/Authorization and
Insecure Defaults
This category represents 23% of the SCADA vulnerabilities. It includes many insecure defaults, clear-text

transmission of sensitive information, missing encryption, and unsafe ActiveX controls marked safe for

scripting.

Case Study: Siemens SINEMA Server Insecure File Permissions

Privilege Escalation Vulnerability

One misconfiguration often seen in HMI products occurs when companies decide to create their own

Access Control Lists (ACLs) and top-level directory instead of using the default Windows Program Files

directory. Instead of being properly protected, these top-level directories are by default world-writable,

and the directory tree includes the solution’s service binaries. This allows any local user to drop new

binaries that will execute as a system service into the directory.

This issue manifested itself in the Siemens SINEMA Server and was addressed through CVE-2016-6486.17

The product installed itself in a directory tree with a weak ACL. By default, Microsoft sets up a directory—

Program Files—with secure ACLs.

Lack of authentication/
authorization and insecure
defaults

23.36%

Figure 5: Command line showing the Program Files standard permissions

Administrator: Command Prompt

C:\>icacls “Program Files”
Program Files NT SERVICE\TrustedInstaller:(F)
 NT SERVICE\TrustedInstaller:(CI)(IO)(F)
 NT AUTHORITY\SYSTEM:(M)
 NT AUTHORITY\SYSTEM:(OI)(CI)(IO)(F)
 BUILTIN\Administrators:(M)
 BUILTIN\Administrators:(OI)(CI)(IO)(F)
 BUILTIN\Users:(RX)
 BUILTIN\Users:(OI)(CI)(IO)(GR,GE)
 CREATOR OWNER:(OI)(CI)(IO)(F)
 APPLICATION PACKAGE AUTHORITY\ALL APPLICATION PACKAGES:(RX)
 APPLICATION PACKAGE AUTHORITY\ALL APPLICATION PACKAGES:(OI)(CI)(IO)(GR,GE)
 APPLICATION PACKAGE AUTHORITY\ALL RESTRICTED APPLICATION PACKAGES:(RX)
 APPLICATION PACKAGE AUTHORITY\ALL RESTRICTED APPLICATION PACKAGES:(OI)(CI)(IO)(GR,GE)

Successfully processed 1 files: Failed processing 0 files

C:\>

14 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

Figure 6: Security permissions properties for Siemens SINEMA Server

As seen above, anyone on the system may append and write data to the files contained in this directory.

Users may also add files and subdirectories, which can lead to code execution because of localization

directories. Even worse, if we examine the permissions where the programs reside, the results prove

troubling.

Note that only administrative and special accounts have the ability to write files into that tree. Users also

have read and execute permission.

Instead of using Program Files or at least the same permissions found in Program Files, the Siemens

installer creates its own top-level tree.

C:\Siemens\SINEMAServer\WinCC_OA>icacls 3.11

3.11 NT AUTHORITY\Authenticated Users:(I)(OI)(CI)(F)

 NT AUTHORITY\SYSTEM:(I)(OI)(CI)(F)

 BUILTIN\Administrators:(I)(OI)(CI)(F)

 BUILTIN\Users:(I)(OI)(CI)(RX)

 BUILTIN\Users:(I)(CI)(AD)

 BUILTIN\Users:(I)(CI)(WD)

 CREATOR OWNER:(I)(OI)(CI)(IO)(F)

As noted by the highlighted string, Authenticated Users have full control. To join the Authenticated Users

group, a user only needs to authenticate with the Windows domain. Essentially, that means almost

everyone on the system will be in the Authenticated Users group. Examining a binary within this directory

shows similar results.

15 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

C:\Siemens\SINEMAServer\WinCC_OA\3.11\bin>icacls WCCILpmon.exe

WCCILpmon.exe NT AUTHORITY\Authenticated Users:(I)(F)

 NT AUTHORITY\SYSTEM:(I)(F)

 BUILTIN\Administrators:(I)(F)

 BUILTIN\Users:(I)(RX)

It is important to note that this particular binary starts a service that runs at the Local System level.

C:\Windows\system32>sc qc sinema_server

[SC] QueryServiceConfig SUCCESS

SERVICE_NAME: sinema_server

 TYPE : 10 WIN32_OWN_PROCESS

 START_TYPE : 2 AUTO_START

 ERROR_CONTROL : 1 NORMAL

 BINARY_PATH_NAME :

C:\Siemens\SINEMAServer\WinCC_OA\3.11\Bin\WCCILpmon.exe

 LOAD_ORDER_GROUP :

 TAG : 0

 DISPLAY_NAME : SINEMA_SERVER

 DEPENDENCIES : Sinema_Server_Db

 SERVICE_START_NAME : LocalSystem

The end result of this insecure default installation allows any Authenticated User to swap out the binary

at will. Furthermore, that new attacker-controlled binary executes under the context of Local System after

the next reboot.

Case Study: Advantech WebAccess

Advantech WebAccess provides a cross-platform, cross-browser data access experience, and a UI

based on HTML5 technology.18 The ZDI program received a bug report about a condition that allowed

other passwords to be viewed when changing a password. The ICS-CERT report description of this bug

states, “A properly authenticated administrator can view passwords for other administrators.” It should

be noted that this does not mean the system administrator. Instead, this refers to the administrator of a

given SCADA solution.

Within the solution, there exists the script upAdmin.asp that allows a SCADA administrator to update his

username, password, or description. This Active Server Pages (ASP) script can be abused by someone

with permission on the system.

16 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

Figure 7: Advantech WebAccess User Configuration panel

For an attacker to take advantage of this bug, he must first log in to a known account and click

“Project user property.” This takes him to the URL http://<ip>/broadWeb/user/upAdminPg.

asp?uname=known&return=bwproj.

In this example, <ip> is the IP address of the system and known is the known user account. The attacker

then changes the name of the account in the URL to the targeted account as in http://<ip>/broadWeb/

user/upAdminPg.asp?uname=victim&return=bwproj.

While the password for the victim account is initially obscured by asterisks, simply viewing the HTML

source on the page will display the password of the target user.

<tr bgcolor=“#C9C9CB”>

		 <td width=“30%” align=“right”>Password</td>

		 <td width=“70%” align=“left” valign=“middle”>

			 <input type=“password” name=“Password” maxlength=“8” size=“8” value=“secret”>

	 </td>

</tr>

This bug allows an authenticated user to get the password of any other user, including the overall

administrator of the SCADA solution.

17 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

Code Injection Issues
Much like other online services, code injection vulnerabilities exist within the HMI realm. These issues

represent 9% of the vulnerabilities identified. While common injection types—SQL, command, OS,

code—still occur, there are domain-specific injections that also pose a risk to SCADA solutions. One of

the domain-specific languages prone to injection is Gamma script, which is used by the Cogent DataHub

system.

What is Gamma script?

Cogent DataHub products use a proprietary language called Gamma for its HMI

solutions. According to the manufacturer, Gamma is a dynamically typed interpreted

programming language specifically designed to allow rapid development of control

and UI applications. The language relies on a syntax similar to C and C++ but with a

range of built-in features that make it a far better language for developing sophisticated

real-time systems. Gamma also comes with a fully documented API and is available

to anyone on the Internet.

Code injection 8.76%

18 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

Case Study: Cogent DataHub

According to the manufacturer, Cogent DataHub is a memory-resident, real-time database that acts as

a hub that provides fast and efficient concentration and distribution of data for OLE for Process Control

(OPC) and other Windows applications. The ZDI program received a report on a bug that allows an

attacker to turn on insecure processing mode in the web server. This provides a way for an attacker to

send arbitrary scripts to the server and execute arbitrary code.

Figure 8: Cogent DataHub WebView

(Source: http://www.softwaretoolbox.com/images/101210_webview_1.gif?crc=3945836907)

As seen above, Cogent DataHub provides a real-time middleware solution that adds visualizations to

complex SCADA systems.

In this case, the attacker leverages a flaw in the EvalExpression method within Gamma to execute

attacker-controlled code in the target system. This method is remotely accessible through the Ajax facility

listening on TCP port 80. Supplying the target a specifically formatted Gamma script allows the execution

of arbitrary OS commands.

19 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

Since Gamma is a domain-specific language, it contains many built-in features and functions specific

to the SCADA industry. However, the script also contains the ability to access and execute system

commands. It is this ability that may be abused by the attacker, as seen in the vulnerable code below.

Method AJAXSupport.EvalExpression(!expression)

{

	 if (.allow_any_expression)

	 {

		 eval (expression); << Bug here

	 }

	 else

	 {

		 error (“Arbitrary expressions evaluation is disabled”);

	 }

}

The highlighted bug takes an expression and checks one flag to determine if the system is allowed to

execute the expression. If this check returns true, the expression executes, regardless of what it contains.

An attacker still must trick the system into loading the necessary libraries and change the value to ensure

the system returns true to execute the expression. Fortunately for the attacker, the system allows for this

as well.

To complete this exploit, an attacker must first send an HTTP request to any Gamma script that loads the

necessary libraries. As mentioned, while developers assume these systems will operate on an isolated

network, this is often not the case. The attacker uses the request to call AJAXSupport.AllowExpressions

and set allow_any_expression to True. This allows the attacker to then call the AJAXSupport.EvalExpression

method and pass in the script that he wants to execute. This attack method is very reliable and repeatable.

20 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

Figure 9: Code differences before and after patching

The first portion of the patch removed AllowExpressions completely. This prevents an attacker from

toggling that flag within the system. While the vendor did not remove EvalExpressions completely, it did

add a comment noting that the use of the method represents a security risk.

/* This method is dangerous. It could allow somebody to execute arbitrary

code via an HTTP call. If you absolutely need it then create a script to

define it, and then be sure the web server port is only accessible from a

trusted network */

Cogent also commented out the offending code to prevent it from being called in by default. To enable the

code, a developer must go in and manually uncomment the method. This method also makes it unlikely

for Cogent to regress the bug at a later time.

Reviewing the patch shows how Cogent decided to tackle the problem. The left-hand side of the image

below shows the old code while that on the right-hand side shows the patched code. The changes are

highlighted.

21 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

Disclosure Statistics
Vulnerability Exposure Windows
When researchers do find vulnerabilities in SCADA products, the amount of time needed to fix the bug

varies. This time is often referred to as the vulnerability exposure window. ZDI researchers reviewed all

HMI vulnerabilities received through the program (more than 250) and measured how long they actually

took to get fixed. As seen in the data over the last four years, the mean time to fix is not trending down.

Since 2013, the average time between when ZDI researchers disclose a bug to the vendor and the time

when a patch is released is right about 140 days.

0

100

200

2016201520142013

158 158

143

124

Figure 10: Mean time to patch vulnerabilities from the time they were disclosed by year

Patch quality also plays a role in this time line. A problematic update applied to a system could result in a

self-induced denial of service (DoS) on a critical piece of infrastructure. Due to these and other concerns,

there is a lag between the availability of a patch and the installation of that patch to a production system.

22 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

Not all SCADA vendors work under the same time lines. Certain vendors respond much more quickly

than others. For example, ZDI has seen Cogent Real-Time Systems consistently respond quickly to bug

reports. In one of the first disclosures to Cogent, the CEO actually emailed ZDI researchers to better

understand the vulnerability and ensure it was quickly patched (six days). Larger vendors—ABB, GE,

Indusoft, and PTC—take on average over 200 days to produce a patch.

0 125 250

WellinTech

Unitronics

Trihedral Engineering

Tibbo

Schneider Electric

Rockwell Automation

PTC

MICROSYS

Indusoft

Honeywell

GE

Ecava

Cogent Real-Time Systems

Codesys

Advantech

ABB 221

131

192

58

171

226

169

214

113

122

226

132

88

23

195

164

Figure 11: Mean time to patch vulnerabilities from the time they were disclosed by vendor

23 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

Industry-by-Industry Comparison
Comparing the response time of the SCADA industry to other industries reveals their response time

is not unlike other industries. While the highly deployed software of large vendors such as Microsoft,

Apple, Oracle, Adobe, and others have an average response time of under 120 days, SCADA and security

software vendors’ average around 150 days. The security software industry is slightly faster but not

significantly. The business software category includes enterprise offerings from companies such as HPE

and IBM. These vendors take significantly longer to address bug disclosures.

0

100

200

SecuritySCADAHighly
deployed

Business

189

116

146
141

Figure 12: Mean time to patch vulnerabilities from the time they were disclosed by industry

24 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

Researcher Guidance
For researchers who are looking for vulnerabilities within HMI solutions, including vendors who are auditing

their own solutions, there are steps you can take to help find bugs quickly and efficiently.

Basic Fuzzing
The first step to finding vulnerabilities within HMI solutions involves fuzzing. Even simple bit-flipping

fuzzing produces highly effective results against HMI vulnerabilities. Researchers should look for new file

associations during installation to aid in fuzzing, as many of the file formats are wide open. Also, make

sure to enable page heap on the process that is being attacked to find heap corruption since then it

breaks at the corruption point instead of later on when it is being used.

Attack Surface Analyzer
The Microsoft Attack Surface Analyzer (ASA)19 assists developers in understanding changes in Windows

systems’ attack surface resulting from the installation of the applications the vendor develops. The tool

creates system snapshots before and after installation. ASA also highlights security misconfigurations

and increases in attack surfaces. These include such things as Component Object Model (COM) objects,

ActiveX controls, file associations, and RPC endpoints.

25 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

For example, the output below shows the web root directory—a location where files are placed for

execution in the high-privileged web server context—is currently set as world-writable.

Figure 13: Output showing the web root directory

Note that ASA currently does not work in Windows 10 but is still available for previous Windows versions.

Audit for Banned APIs
Since the introduction of the Security Development Lifecycle (SDL)20 in 2006, Microsoft banned the use

of problematic C library functions. Many APIs within the C runtime are known security issues and should

be avoided. Our investigation found that these banned APIs and other functions are far too common in

HMI code and have predictably negative effects. Use a disassembler such as IDA to trace the tainted

data back to the source of the unsafe copy APIs (sprintf, strcpy), especially if an exploit can get to these

functions from attacker-supplied data.

26 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

Conclusion
Within the various SCADA solutions, the HMI represents the clearest and most present target for

attackers. The HMI acts as a centralized hub for managing critical infrastructure. If an attacker succeeds

in compromising the HMI, nearly anything can be done to the infrastructure itself, including causing

physical damage to SCADA equipment. Even if attackers decide not to disrupt operations, they can still

exploit the HMI to gather information about a system or disable alarms and notifications meant to alert

operators of danger to SCADA equipment.

In our research, we found that most HMI vulnerabilities fell into four categories—memory corruption,

credential management, lack of authentication/authorization and insecure defaults, and code injection—

all of which are preventable through secure development practices. We also observed that the average

time between when ZDI researchers disclose a bug to a SCADA vendor and the time when a patch is

released reaches up to 150 days, 30 more days than it would take vendors such as Microsoft or Adobe to

do so, but 43 days less than enterprise offerings from companies such as HPE and IBM. Considering the

impact of attacks against SCADA systems, where vulnerabilities are an effective entry point, our hope is

that HMI vendors, SCADA owners, and administrators take notice and respond accordingly.

Researchers who are looking to find new vulnerabilities in HMIs should start with basic fuzzing techniques.

Even simple bit-flipping fuzzing produces highly effective results against HMI vulnerabilities. Researchers

should also look for new file associations during installation to aid in fuzzing, as many of the file formats

are wide open.

Developers of HMI and SCADA solutions would be well advised to adopt the secure life cycle practices

implemented by OS and application developers over the last decade. By taking simple steps such as

auditing for the use of banned APIs, vendors can make their products more resilient to attacks. SCADA

developers also need to expect their products to be used in manners that they did not intend. For example,

even though it should be considered a poor security practice, developers must assume their products

and solutions will be connected to a public network. By taking the mindset that assumes a worst-case

scenario, developers can implement more defense-in-depth measures to add protection.

27 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

Malware specifically targeting ICS exists21 and actively target HMIs. The ZDI program encourages

researchers to find and report the bugs associated with HMI and other SCADA systems to our bounty

program.22 By working together, the researchers receive compensation for their work while the vendors

receive data on where their products can be improved. Bugs in SCADA systems will likely be with us for

many years to come. By working together, the security of these systems will continue to improve. While

a completely secure system will likely never be created, implementing strong research and development

tactics will be our best chance to keep the lights on as long as needed.

28 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

References

1.	 Kim Zetter. (2014). Amazon. “Countdown to Zero Day: Stuxnet and the Launch of the World’s First Digital Weapon.” Last

accessed on 23 February 2017, https://www.amazon.com/Countdown-Zero-Day-Stuxnet-Digital/dp/077043617X.

2.	 Alex Gibney. (2016). IMDB. “Zero Days.” Last accessed on 23 February 2016, http://www.imdb.com/title/tt5446858/.

3.	 Jeremy Kirk. (8 November 2012). ComputerWorld. “Siemens Software Targeted by Stuxnet Still Full of Holes: Details from

a Cancelled Defcon Presentation Were Revealed on Thursday in Seoul.” Last accessed on 23 February 2017, http://www.

computerworld.com/article/2493358/security0/siemens-software-targeted-by-stuxnet-still-full-of-holes.html.

4.	 Michael B. Kelley. (20 November 2013). Business Insider. “The Stuxnet Attack on Iran’s Nuclear Plant Was ‘Far More

Dangerous’ Than Previously Thought.” Last accessed on 23 February 2017, http://www.businessinsider.com/stuxnet-was-far-

more-dangerous-than-previous-thought-2013-11.

5.	 US-CERT. (25 February 2016). ICS-CERT. “Alert (IR-ALERT-H-16-056-01): Cyber Attack Against Ukrainian Critical

Infrastructure.” Last accessed on 23 February 2017, https://ics-cert.us-cert.gov/alerts/IR-ALERT-H-16-056-01.

6.	 Kim Zetter. (3 March 2016). Wired. “Inside the Cunning, Unprecedented Hack of Ukraine’s Power Grid.” Last accessed on 23

February 2017, https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/.

7.	 US-CERT. (2017). ICS-CERT. “The Industrial Control Systems Cyber Emergency Response Team (ICS-CERT).” Last accessed

on 23 February 2017, https://ics-cert.us-cert.gov/.

8.	 Homeland Security. (2015). “NCCIC/ICS-CERT Year in Review: National Cybersecurity and Communications Integration

Center/Industrial Control Systems Cyber Emergency Response Team, FY 2015.” Last accessed on 23 February 2017, https://

ics-cert.us-cert.gov/sites/default/files/Annual_Reports/Year_in_Review_FY2015_Final_S508C.pdf.

9.	 TechTarget. (2000−2017). Search Security. “DEFINITION: Address Space Layout Randomization (ASLR).” Last accessed on 23

February 2017, http://searchsecurity.techtarget.com/definition/address-space-layout-randomization-ASLR.

10.	 Microsoft. (2017). Microsoft Developer Network. “/SAFESEH (Image Has Safe Exception Handlers).” Last accessed on 23

February 2017, https://msdn.microsoft.com/en-us/library/9a89h429.aspx.

11.	 Microsoft. (2017). Microsoft Developer Network. “/GS (Buffer Security Check).” Last accessed on 23 February 2017, https://

msdn.microsoft.com/en-us/library/8dbf701c.aspx.

12.	 Advantech Co. Ltd. (1983−2017). Advantech. “WebAccess HMI/SCADA Software.” Last accessed on 23 February 2017, http://

www.advantech.com/products/webaccess-hmi-scada-software/sub_gf-1m94v.

13.	 Brandon Bray. (February 2002). Microsoft Developer Network. “Compiler Security Checks in Depth.” Last accessed on 23

February 2017, https://msdn.microsoft.com/library/aa290051.aspx.

14.	 Michael Howard. (June 2011). Microsoft Developer Network. “Security Development Lifecycle (SDL) Banned Function Calls.”

Last accessed on 23 February 2017, https://msdn.microsoft.com/en-us/library/bb288454.aspx.

15.	 Trend Micro Inc. (2017). TippingPoint Zero Day Initiative. “Disclosure Policy.” Last accessed on 23 February 2017, http://www.

zerodayinitiative.com/advisories/disclosure_policy/.

16.	 HeidiSQL. (2017). “What’s This?” Last accessed on 23 February 2017, https://www.heidisql.com/.

17.	 US-CERT. (13 October 2016). ICS-CERT. “Advisory (ICSA-16-215-02A): Siemens SINEMA Server Privilege Escalation

Vulnerability (Update A).” Last accessed on 23 February 2017, https://ics-cert.us-cert.gov/advisories/ICSA-16-215-02.

18.	 Advantech Co. Ltd. (1983−2017). Advantech. “Advantech WebAccess.” Last accessed on 23 February 2017, http://www.

advantech.com/industrial-automation/webaccess.

https://www.amazon.com/Countdown-Zero-Day-Stuxnet-Digital/dp/077043617X
http://www.imdb.com/title/tt5446858/
http://www.computerworld.com/article/2493358/security0/siemens-software-targeted-by-stuxnet-still-full-of-holes.html
http://www.computerworld.com/article/2493358/security0/siemens-software-targeted-by-stuxnet-still-full-of-holes.html
http://www.businessinsider.com/stuxnet-was-far-more-dangerous-than-previous-thought-2013-11
http://www.businessinsider.com/stuxnet-was-far-more-dangerous-than-previous-thought-2013-11
https://ics-cert.us-cert.gov/alerts/IR-ALERT-H-16-056-01
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://ics-cert.us-cert.gov/
https://ics-cert.us-cert.gov/sites/default/files/Annual_Reports/Year_in_Review_FY2015_Final_S508C.pdf
https://ics-cert.us-cert.gov/sites/default/files/Annual_Reports/Year_in_Review_FY2015_Final_S508C.pdf
http://searchsecurity.techtarget.com/definition/address-space-layout-randomization-ASLR
https://msdn.microsoft.com/en-us/library/9a89h429.aspx
https://msdn.microsoft.com/en-us/library/8dbf701c.aspx
https://msdn.microsoft.com/en-us/library/8dbf701c.aspx
http://www.advantech.com/products/webaccess-hmi-scada-software/sub_gf-1m94v
http://www.advantech.com/products/webaccess-hmi-scada-software/sub_gf-1m94v
https://msdn.microsoft.com/library/aa290051.aspx
https://msdn.microsoft.com/en-us/library/bb288454.aspx
http://www.zerodayinitiative.com/advisories/disclosure_policy/
http://www.zerodayinitiative.com/advisories/disclosure_policy/
https://www.heidisql.com/
https://ics-cert.us-cert.gov/advisories/ICSA-16-215-02
http://www.advantech.com/industrial-automation/webaccess
http://www.advantech.com/industrial-automation/webaccess

29 | Hacker Machine Interface: The State of SCADA HMI Vulnerabilities

19.	 Tim Rains. (2 August 2012). Microsoft Secure Blog. “Microsoft’s Free Security Tools—Attack Surface Analyzer.” Last accessed

on 23 February 2017, https://blogs.microsoft.com/microsoftsecure/2012/08/02/microsofts-free-security-tools-attack-surface-

analyzer/.

20.	 Microsoft. (2017). Microsoft. “What Is the Security Development Lifecycle?” Last accessed on 23 February 2017, https://www.

microsoft.com/en-us/sdl/default.aspx.

21.	 US-CERT. (1 July 2014). ICS-CERT. “Advisory (ICSA-14-178-01): ICS Focused Malware.” Last accessed on 23 February 2017,

https://ics-cert.us-cert.gov/advisories/ICSA-14-178-01.

22.	 Trend Micro Incorporated. (2017). TippingPoint Zero Day Initiative. “Program Benefits.” Last accessed on 23 February 2017,

http://www.zerodayinitiative.com/about/benefits/.

https://blogs.microsoft.com/microsoftsecure/2012/08/02/microsofts-free-security-tools-attack-surface-analyzer/
https://blogs.microsoft.com/microsoftsecure/2012/08/02/microsofts-free-security-tools-attack-surface-analyzer/
https://www.microsoft.com/en-us/sdl/default.aspx
https://www.microsoft.com/en-us/sdl/default.aspx
https://ics-cert.us-cert.gov/advisories/ICSA-14-178-01
http://www.zerodayinitiative.com/about/benefits/

©2017 by Trend Micro, Incorporated. All rights reserved. Trend Micro and the Trend Micro t-ball logo are trademarks or registered trademarks of
Trend Micro, Incorporated. All other product or company names may be trademarks or registered trademarks of their owners.

TREND MICROTM

Trend Micro Incorporated, a global cloud security leader, creates a world safe for exchanging digital information with its Internet content security and

threat management solutions for businesses and consumers. A pioneer in server security with over 20 years experience, we deliver top-ranked client,

server, and cloud-based security that fits our customers’ and partners’ needs; stops new threats faster; and protects data in physical, virtualized, and

cloud environments. Powered by the Trend Micro™ Smart Protection Network™ infrastructure, our industry-leading cloud-computing security technology,

products and services stop threats where they emerge, on the Internet, and are supported by 1,000+ threat intelligence experts around the globe.

For additional information, visit www.trendmicro.com.

Created by:

The Global Technical Support and R&D Center of TREND MICRO

www.trendmicro.com

